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Abstract

We introduce the spline-DCS model with a dynamic cubic spline as a way of

capturing periodic behavior in financial data that evolves over time. Our empirical

application provides evidence for changing diurnal patterns in the high-frequency

financial data we study. We illustrate that this generalization can lead to an im-

provement in the quality of the fit of the model to the empirical distribution of

data, especially in the tail region, for an extended out-of-sample period. Moreover,

it can lead to a substantial improvement in predicting intra-day volume propor-

tions, which is useful for Volume-Weighted Average Price strategies. Our novel

approach gives new insights into regular trading behavior and how it responds to

changing market conditions.

Keywords: order slicing; price impact; spline; volume prediction; score; sea-

sonality

JEL classification: C22, C51, C53, C58, G01, G12

1. Introduction

Intra-day periodicity caused by periodic trading patterns is a stylized feature of high-

frequency financial data. Popular methods for capturing this effect include the use of

the Fourier series or a deterministic spline and computing a sample moment for each

intra-day bin.2 It is commonly assumed in the literature that the shape of periodicity is

the same every day. It is also common to estimate the intra-day periodic component first

and diurnally adjust data before estimating other non-periodic components. But such a

two-step procedure can render the asymptotic properties of statistical tests invalid.

1Nuffield College and the Department of Economics, Oxford University. Email:
ryoko.ito@economics.ox.ac.uk. The author thanks Andrew Harvey for his helpful comments on
this research and guiding her academic progress. The author also thanks Philipp Andres, Michele
Caivano, Adam Clements, Oliver Linton, Donald Robertson, Stephen Thiele, and the participants of
the Score Workshop in 2013 at Tinbergen Institute, especially Siem Jan Koopman and Andre Lucas,
for providing thoughtful comments on this paper. Finally, the author thanks the Keynes Fund and the
Stevenson Fund (of the Faculty of Economics, Cambridge University) for funding travels to present this
paper, and the International Monetary Fund, the Cambridge Trust, and the Royal Economic Society
for funding her PhD.

2See, for instance, Andersen and Bollerslev (1998), Engle and Russell (1998), Zhang et al. (2001),
Campbell and Diebold (2005), Engle and Rangel (2008), Brownlees et al. (2011), and Engle and Sokalska
(2012).
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In this paper, we extend the spline-DCS model of Ito (2016) to capture periodic

behavior that evolves over time, and introduce it as a new tool for studying and under-

standing intra-day seasonality in finance. The periodic component is estimated easily

and simultaneously with all of the other components of the model by the method of max-

imum likelihood (ML). We apply the model to the trade volume of the IBM stock traded

on the New York Stock Exchange (NYSE). We find statistically significant evidence for

changing diurnal patterns in the data we study, and illustrate the empirical merit of this

generalization. We find that allowing the pattern of periodicity to change can improve

the quality of the fit of the model to the empirical distribution of the data, especially in

the tail region, for an extended out-of-sample period (up to 100 days). Moreover, using

the slicing loss function of Brownlees et al. (2011), we show that our model can signifi-

cantly improve the prediction of intra-day volume proportions, which is a key ingredient

in high-frequency trading algorithms that aim to minimize the price impact3 of a given

transaction and to achieve the Volume-Weighted Average Price (VWAP) benchmark.4

Our model successfully captures diurnal U-shaped patterns in our data. But how

does this pattern change over time? How does it change with macroeconomic conditions?

We find that the amplitude (or the height) of the U-shape increases in the latter half of

2007, which roughly coincides with the onset of the 2007-2008 financial crisis. This may

be a reflection of an increase in the amount of important news transmitted over night,

considering that many important policy and financial decisions were made at night during

the crisis. The profitability of the firm was also at risk and its revenue declined during the

U.S. economic downturn in 2008 and 2009. We find that the amplitude of the U-shape

reverts to a level comparable to the pre-crisis period by the end of 2013.

Does the U-shape become flatter over time? This is a reasonable guess since more

trades in recent years are executed automatically and continuously throughout the day in

high frequency by computers with algorithmic trading schemes. This means that traders

don’t “take lunch” like they used to. However, contrary to this plausible hypothesis, we

find that the U-shape become more exacerbated over time. We find that transactions at

the beginning and the end of the day have grown over the past decade to account for a

larger share of total daily volume. Moreover, we find that the shape of periodicity does

not change much around midday but evolves the most in the morning and the afternoon

trading hours. This phenomenon can be explained by the fact that high-frequency traders

typically try to minimize price impact by slicing a given order into small transaction sizes

and executing them at different times of the day. An effective way of placing transactions

to achieve this objective is to mimic the pattern of market activity and disguise themselves

in the market, since a given transaction is less likely to move market price when the market

3The impact of the size of a given transaction on the execution price. It is also called the market
impact.

4It is widely used by traders as a guarantee to clients that their orders will be executed at that target.
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is attracting a high volume of transactions. The rise of algorithmic traders that exploit

intra-day patterns of the market in this way can exacerbate the periodic behavior.

The structure of this paper is as follows. Section 2 defines the dynamic cubic spline

in the spline-DCS framework. Section 3 describes our trade volume data. The in-sample

and out-of-sample estimation results are reported in Sections 4 and 5. Section 6 concludes

by laying out possible extensions for further research. In particular, we note that our

model can be generalized further to introduce the version with a weekly spline as a new

way of capturing the day-of-the-week effect in financial data.

2. Spline-DCS with dynamic spline

2.1. Notations

We adhere to the notations of Ito (2016) throughout this paper. We use the time subscript

·t,τ to denote the τ -th intra-day bin on the t-th trading day for τ = 1, . . . , I and t =

1, . . . , T , where I, T ∈ N>0. We set ·t+1,0 = ·t,I for all t. We use the set notation,

ΨT,I = {(t, τ) ∈ {1, 2, . . . , T}×{1, 2, . . . , I}}. Ft,τ denotes the set of information available

at time (t, τ) ∈ ΨT,I . Any F1,1-measurable random variables are almost surely constant.

We simply write ·t,τ instead of ·t,τ |t,τ−1 even when the variable is conditional on Ft,τ−1.
We denote the estimated quantities by ·̂ and forecast quantities by ·̃ .

2.2. Spline-DCS

The version of the spline-DCS we study in this paper is

yt,τ = εt,τ exp(λt,τ ), λt,τ = ω + µt,τ + ηt,τ + st,τ , εt,τ ∼ i.i.d. F ∗(·; θ∗)

for (t, τ) ∈ ΨT,I . F
∗(·; θ∗) denotes the cumulative distribution function (c.d.f.) of εt,τ with

the vector of distribution parameters denoted by θ∗.5 ut,τ is the score of the distribution,

F ∗. The non-periodic non-stationary component is µt,τ = βt,τ−1 + µt,τ−1 + κµut,τ−1. This

has the dynamics of an integrated random walk with time-varying drift, where the drift

is given by βt,τ = βt,τ−1 + κβut,τ−1. The initial value, β1,1, of βt,τ is treated as unknown

and estimated with other parameters of the model. We find that β1,1 is insignificant in

the estimation section (Section 4). The scale of trade volume should increase in response

to positive news, giving κβ, κµ > 0. The drift term disappears if κβ = β1,1 = 0. We

set µ1,1 = 0 so that ω ∈ R is identified. The non-periodic stationary component is

ηt,τ = η
(1)
t,τ + η

(2)
t,τ with

η
(1)
t,τ = φ

(1)
1 η

(1)
t,τ−1 + φ

(1)
2 η

(1)
t,τ−2 + φ

(1)
3 η

(1)
t,τ−3 + κ(1)η ut,τ−1 + κ(1)η,asign(−rt,τ−1)(ut,τ−1 + νξ),

η
(2)
t,τ = φ

(2)
1 η

(2)
t,τ−1 + κ(2)η ut,τ−1 + κ(2)η,asign(−rt,τ−1)(ut,τ−1 + νξ).

5We do not include the probability mass, p = P(yt,τ = 0), of zero-valued observations in the model
since the number of zero-valued observations in our data is negligible. (See Section 3.)
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In the estimation section, we find that the inclusion of the drift term in µt,τ and the third

lag in η
(1)
t,τ can capture the dynamics of the data well.

The role of each component is such that µt,τ should be less sensitive to changes in ut,τ−1

than η
(1)
t,τ , which should be, in turn, less sensitive than η

(2)
t,τ . This gives |κµ| < |κ(1)η | < |κ(2)η |.

rt,τ denotes the equity returns of IBM, which is computed as 100 times the first difference

in the logarithms of prices. The asymmetry coefficients, κ
(1)
η,a and κ

(2)
η,a, can be either

positive or negative. We set η
(j)
1,1 = E[η

(j)
t,τ ] = 0 for j = 1, 2.6

2.2.1. Dynamic spline

The periodic component, st,τ , captures the pattern of intra-day periodicity. Recall from

the exposition by Ito (2016) that the static daily spline (st,τ = sτ ) is

sτ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γ, τ = 1, . . . , I, (1)

where zj : [τj−1, τj]
k+1 → Rk+1 for j = 1, . . . k is a (k + 1)-dimensional vector of deter-

ministic functions that conveys all information about the polynomial order, continuity,

and zero-sum conditions of the spline. τ0 < · · · < τk are the coordinates of the knots

along the time axis with τ0 = 1, τk = I, and τj ∈ {2, . . . , I − 1} for j = 1, . . . , k − 1.

The y-coordinates (height) of the knots are denoted by γ = (γ0, . . . , γk)
>. Then we have

k+ 1 knots for some k ∈ N>0 such that k < I. The derivation of zj(τ) is the same as Ito

(2016). We capture the overnight effect by allowing for γ0 6= γk.

The static spline in (1) becomes dynamic by letting the height of the knots, γ, to

change over time. We do this by re-defining (1) as

st,τ =
k∑
j=1

1l{τ∈[τj−1,τj ]} zj(τ) · γt,τ , γt,τ = γt,τ−1 + κ∗ · ut,τ−1, (2)

where κ∗ = (κ∗0, . . . , κ
∗
k)
> is a vector of parameters. st,τ needs to sum to zero over one

complete period for the parameters to be identified. That is, it must satisfy
∑I

τ=1 st,τ =

w∗ ·γt,τ = 0 for t = 1, . . . , T , where w∗ is defined by Ito (2016). The construction of zj(τ)

ensures that this constraint holds, but we also need to set w∗ · γ1,1 = 0 and w∗ · κ∗ = 0.

We can impose these conditions on γ1,1 and κ∗ by setting γk;1,1 = −
∑k−1

i=0 w∗iγi;1,1/w∗k

and κ∗k = −
∑k−1

i=0 w∗iκ
∗
i /w∗k, where γi;1,1 and w∗i denote the ith element of γ1,1 and w∗,

respectively.7

The location of knots, τ0, . . . , τk and the size of k depend on the empirical shape of

diurnal patterns and the number of intra-day observations. The first knot and the last

knot are placed at 9.30am and 4pm. Following the rule of thumb discussed by Ito (2016),

we found placing γ1 . . . , γk−1 at 10am, 11am, 12.30pm, 2pm, and 3.30pm works well.

6This assumes that yt,τ and rt,τ are independent, and that rt,τ is symmetric around zero.
7Harvey and Koopman (1993) use a set of contemporaneous Gaussian disturbances to drive the

dynamics of the spline instead of the lagged score. This means that these identification restrictions on
γ1,1 and κ∗ are different from the formulation given by the authors.

4



Window In-sample Out-of-sample

1 Mon 7 Jan 2002 - Fri 1 Apr 2005 Mon 4 Apr 2005 - Fri 19 Aug 2005
2 Mon 8 Jan 2007 - Fri 31 Dec 2010 Mon 3 Jan 2011 - Fri 20 May 2011
3 Mon 9 Jan 2012 - Tue 31 Dec 2013 Thu 2 Jan 2014 - Fri 21 Mar 2014

Table 1: The list of sampling windows. The sample includes weekdays only. Each day
includes the hours between 9.30am and 4pm in the NY local time.

In-sample Out-of-sample
Window Work days Holidays Work days Holidays

1 813 32 98 2
2 1001 38 98 2
3 498 18 55 2

Table 2: The number of days included in each sampling window.

Window Mean S.D. Skew % zeros

1 168,026 152,512 5.4 0.0%
2 179,544 170,656 6.2 0.0%
3 88,908 101,612 10.1 0.0%

Table 3: Sample statistics for each in-sample window. The rightmost column is the
percentage of observations that are zero-valued.

Thus, we have k + 1 = 7 knots in total. The shape of the spline up to 12.30pm captures

busy trading hours in the morning, between 12.30pm and 2.30pm captures quiet lunch

hours, and after 2.30pm captures an acceleration in trading activities before the market

closes. There is little to no improvement in the quality of the fit of the model to the data

when the number of knots per day increases from this specification.

2.3. Maximum likelihood estimation

All of the parameters of the model are estimated by ML. Ito (2016) outlines the estimation

procedure. We set βt,τ = βt,τ−1, µt,τ = µt,τ−1, η
(1)
t,τ = η

(1)
t,τ−1, η

(2)
t,τ = η

(2)
t,τ−1, and γt,τ = γt,τ−1

for all τ = 1, . . . , I if the t-th sampling day is a public holiday. The joint log-likelihood

function is computed only for the days the market was open. The computing time taken

for the maximum likelihood estimation procedure to converge was about 5 to 10 minutes.

As regard computing the analytical standard errors of the ML estimator, in addition

to the recursive equations derived by Ito (2016) for computing the Fisher information

matrix, the following recursions arising from the dynamic spline are needed:

∂st,τ
∂ϑi

=
k∑
j=1

1l{τ∈[τj−1,τj ]}zj,l(τ)
∂γt,τ
∂ϑi

,

∂γl;t,τ
∂ϑi

=
∂γl;t,τ−1
∂ϑi

+ ut,τ−11l{ϑi=κ∗l } + κ∗
∂ut,τ−1
∂ϑi

+ 1l{ϑi=γl;1,1, (t,τ)=(1,1)}, l = 1, . . . , k.

Here, ϑ is the vector of the constant parameters of the model and ϑi denotes the i-th

element of ϑ.

5



700,000

500 000

600,000

400,000

500,000

300,000

,

200,000

100,000

0
Mon Tue Wed Thu Fri

Figure 1: IBM10m between Monday 7 January 2002 and Friday 11 January 2002. Each
day covers between 9.30am and 4pm in the NY local time.

3. Data characteristics

We apply the model to trade volume of the IBM stock on the New York Stock Exchange

(NYSE). Trade volume is as defined by the number of traded shares. This data was

obtained from www.kibot.com. Each sampling day covers the hours the market is open,

which is between 9.30am and 4pm in the New York (NY) local time. The sampling

frequency is 10 minutes. There are 39 observations per trading day. For convenience, we

call our time series IBM10m. We consider three discrete sampling windows given in Table

1. The first sampling window is before the 2007-2008 financial crisis. The second window

includes the onset of the crisis, and the third window is roughly in the post-crisis period

and when the U.S. economy showed signs of recovery. Table 2 lists for each window the

number of weekdays when NYSE was open, as well as the number of public holidays

when the market was closed. The number of zero-valued observations are negligible in

IBM10m. (See Table 3.)

Figure 1 gives a snapshot of IBM10m between Monday 7 January 2002 and Friday

11 January 2002. The volume fluctuates and clearly exhibits diurnal U-shaped patterns.

The left column of Figure 2 shows that intra-day periodic patterns are also reflected in the

sample autocorrelation of volume, which peaks at the multiples of the 39th lag. Finally,

the skewness statistics in Table 3 and the middle and the right columns of Figure 2 show

that our series are right-skewed and heavy-tailed.

4. Estimation results

Table 4 shows the estimated coefficients when st,τ is the dynamic spline. It tabulates the

results for the full model defined in Section 2, as well as the final model that imposes

coefficient restrictions. In this section, first, we discuss the significance of the dynamic

parameters, κ∗, of the spline. We then discuss the model selection procedure, the signifi-

cance of other parameters, and the quality of the fit of the model to the data. The results

reported here are not sensitive to the choice of initial parameter values that initializes
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Figure 2: The autocorrelation function (left column), the histogram (middle column),
and the empirical c.d.f. (right column) of IBM10m in the in-sample window 1 (top row),
2 (middle row), and 3 (bottom row).

the ML optimization.
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Window 1 (2002-2005) 2 (2007-2010) 3 (2012-2013)

Model Full Final Full Final Full Final
Coef Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.

β1,1 8.6E-05 2.7E-05 —– —– -3.1E-05 1.2E-05 —– —– -1.1E-05 2.8E-05 —– —–
κβ 2.4E-07 6.0E-08 2.6E-08 7.8E-09 2.2E-07 3.1E-08 1.9E-07 3.0E-08 6.1E-08 9.7E-08 1.6E-07 8.0E-08
κµ 1.1E-05 1.8E-04 3.5E-04 1.1E-04 1.2E-03 1.5E-04 1.3E-03 1.7E-04 -5.9E-04 1.3E-04 1.5E-03 3.7E-04

φ
(1)
1 0.527 0.042 0.603 0.040 0.577 0.036 0.579 0.037 0.649 0.046 0.553 0.040

φ
(1)
2 0.332 0.043 0.381 0.040 0.288 0.036 0.287 0.036 0.314 0.046 0.241 0.040

φ
(1)
3 0.124 0.045 —– —– 0.118 0.038 0.116 0.038 0.017 0.054 0.182 0.040

κ
(1)
η 0.020 0.001 0.018 0.001 0.019 0.001 0.019 0.001 0.024 0.002 0.024 0.001

κ
(1)
a,η 1.0E-03 2.7E-04 9.6E-04 1.7E-04 -1.0E-04 1.9E-04 —– —– 2.7E-04 2.3E-04 —– —–

φ
(2)
1 0.752 0.015 0.716 0.015 0.701 0.019 0.698 0.019 0.680 0.040 0.739 0.032

κ
(2)
η 0.032 0.001 0.032 0.001 0.024 0.001 0.024 0.001 0.031 0.002 0.032 0.001

κ
(2)
a,η -1.1E-04 3.2E-04 —– —– 4.2E-04 2.2E-04 3.4E-04 1.4E-04 2.0E-04 2.7E-04 4.5E-04 1.8E-04

γ0;1,1 0.975 0.030 0.972 0.022 0.985 0.045 0.878 0.011 1.017 0.032 0.993 0.038
γ1;1,1 0.554 0.019 0.661 0.023 0.525 0.029 0.457 0.007 0.535 0.020 0.498 0.021
γ2;1,1 0.133 0.018 0.163 0.016 0.088 0.014 0.060 0.007 0.162 0.022 0.120 0.013
γ3;1,1 -0.399 0.016 -0.395 0.012 -0.407 0.008 -0.404 0.006 -0.355 0.022 -0.362 0.021
γ4;1,1 -0.301 0.016 -0.330 0.013 -0.284 0.014 -0.254 0.006 -0.315 0.021 -0.286 0.015
γ5;1,1 0.285 0.017 0.230 0.017 0.322 0.017 0.359 0.007 0.209 0.026 0.247 0.017
κ∗0 1.2E-04 6.7E-05 9.0E-05 3.3E-05 -8.2E-04 1.1E-04 -8.0E-04 1.0E-04 1.3E-04 1.2E-04 -5.6E-04 1.6E-04
κ∗1 -5.1E-06 4.2E-05 2.0E-04 3.9E-05 -5.2E-04 7.0E-05 -5.1E-04 6.9E-05 -5.0E-05 7.5E-05 -2.8E-04 1.0E-04
κ∗2 4.6E-05 3.8E-05 8.7E-05 2.4E-05 -2.2E-04 5.1E-05 -2.1E-04 4.9E-05 -1.4E-04 7.9E-05 -6.8E-05 8.4E-05
κ∗3 -1.7E-05 3.4E-05 -5.3E-06 1.7E-05 2.7E-05 4.4E-05 4.5E-05 4.2E-05 -1.6E-04 8.1E-05 2.9E-04 9.7E-05
κ∗4 -1.1E-05 3.5E-05 -6.3E-05 2.1E-05 2.3E-04 4.9E-05 2.4E-04 4.8E-05 7.2E-05 7.7E-05 1.3E-04 8.9E-05
κ∗5 -2.2E-05 3.9E-05 -1.2E-04 2.8E-05 2.9E-04 5.5E-05 2.4E-04 5.2E-05 2.4E-04 9.4E-05 -2.0E-04 9.5E-05
ω 11.743 0.070 12.025 0.054 11.519 0.071 11.586 0.045 10.946 0.003 11.233 0.128
ν 2.604 0.062 2.674 0.064 3.071 0.095 3.076 0.095 2.631 0.111 2.653 0.122
ξ 3.161 0.132 3.038 0.127 3.404 0.233 3.394 0.232 4.543 0.439 4.489 0.482
ζ 2.185 0.085 2.097 0.081 1.783 0.077 1.779 0.077 2.217 0.138 2.183 0.144

AIC 23.562 23.557 23.5471 23.5470 22.095 22.094
SIC 23.568 23.563 23.553 23.552 22.106 22.104

Loglike -388,209 -388,136 -477,508 -477,509 -222,725 -222,715

Table 4: The estimated coefficients
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AIC SIC
Window Static S Dyn. S Static S Dyn. S

1 (2002-2005) 23.561 23.557 23.566 23.563
2 (2007-2010) 23.552 23.547 23.556 23.552
3 (2012-2013) 22.099 22.094 22.106 22.104

Static S Dyn. S Likelihood χ2
6

Window (Restricted) (Unrestricted) ratio stat p-value

1 (2002-2005) -388,207 -388,136 141 0.000
2 (2007-2010) -477,622 -477,509 226 0.000
3 (2012-2013) -222,770 -222,715 111 0.000

Table 5: The static spline versus the dynamic spline. The second table shows the like-
lihood ratio statistics to test the null of static daily spline (H0 : κ∗ = 0) against the
alternative of dynamic daily spine (H1 : κ∗ 6= 0). This assumes that the statistic asymp-
totically follows the chi-squared distribution with six degrees of freedom. The final model
specification given in Table 4 is used.

4.1. Significance of dynamic periodicity

The estimates of κ∗ are close to zero in Table 4. Using the Akaike information criterion

(AIC), the Schwarz information criterion (SIC), and the likelihood ratio test, we can assess

the significance of κ∗. If they are significant, the data provides evidence for dynamic

periodic patterns. The null is the static spline (H0 : κ∗ = 0) and the alternative is the

dynamic spline (H1 : κ∗ 6= 0). The statistics are tabulated in Table 5. We find statistical

evidence for dynamic periodicity in our data. Both SIC and AIC are in favor of the

dynamic spline over the static one. The likelihood ratio test also rejects the null at the

1% significance level.8

Figure 3 shows a three dimensional visualization of the estimated dynamic spline. We

find that ŝt,τ successfully captures diurnal U-shaped patterns. The pattern of periodicity

varies over time.

The level of the spline at the beginning of the day is different from the level at the

end of the day on any two consecutive trading days, reflecting the overnight effect. For

the first in-sample window, the level of the spline at the start of the day is higher than

the level at the end of the day, whereas the opposite is true for the second and the third

windows.

It is interesting to observe in the in-sample window 2 that the amplitude of the U-

shape increases in the latter half of this period. In particular, the height of the spline at

8The likelihood ratio test should be interpreted with care as it is assumed that we do not have a
boundary value problem of the type studied in Chernoff (1954) under the null. We assume this given
that the elements of κ∗ can be in any quadrant. If this assumption is violated, standard theory based
on the statistic being asymptotically chi-squared would lead to the region of acceptance being too large
(see Harvey (1991, p. 236)). Since H0 is rejected in our case, this should imply that H0 will be rejected
at the same significance level even if we have the boundary value problem.
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(a) The in-sample window 1 (Jan. 2002 - Apr. 2005)
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(b) The in-sample window 2 (Jan. 2007 - Dec. 2010)
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(c) The in-sample window 3 (Jan. 2012 - Dec. 2013)
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Figure 3: exp(ŝt,τ ) for IBM10m when st,τ is the dynamic spline. The x-axis and the y-axis
are trading time between 9.30am-4pm (9.30am at the origin) and the sampling days (the
first day of the sampling period at the origin).
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(b) In-sample window 2
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(c) In-sample window 3
(Jan. 2012 - Dec. 2013)

10:00 11:00 12:00 13:00 14:00 15:00
Hour

0.5

1

1.5

2

2.5

3

3.5

4

S
p

lin
e 

(e
xp

(s
))

Figure 4: The min-max range of exp(ŝt,τ ) at each intra-day bin for the specified in-sample
windows. The spline-DCS with the dynamic spline. Intra-day hours between 9.30am and
4pm in the NY local time along the x-axis.

the beginning of the day increases by a lot in the middle of the in-sample window 2. This

roughly coincides with the beginning of the 2007-2008 financial crisis in the U.S. It could

be a reflection of changes in the amount of news transmitted at night, especially since

many policy decisions were made at night during the crisis. The profitability of the firm

was also at risk and its revenue declined during the U.S. economic downturn in 2008 and

2009. (See Figure 11 in Appendix A.) The relatively large flow of overnight news and the

anticipation of it may have intensified trading activities at the beginning and the end of

each day. The amplitude of the U-shape declines to a level comparable to the pre-crisis

period by the end of 2013.9

Figure 4 shows that the shape of the spline evolves the most in the morning and

the afternoon, but does not change much around midday. Moreover, transactions at the

beginning and the end of the day have grown over the past decade to account for a larger

share of total daily volume by the end of 2013. This could be due to high-frequency

algorithmic trading, which gained popularity in the past decade. High-frequency traders

typically try to minimize the price impact of orders by slicing a given order into small

transaction sizes and spreading them throughout the day. An effective way of placing

transactions to achieve this objective is to mimic the pattern of market activity and

disguise themselves in the market. The rise of algorithmic traders that exploit the pattern

of periodicity can exacerbate periodic behavior.

4.2. Other estimated coefficients and diagnostics

No coefficient restrictions were imposed to obtain the estimated values in Table 4, except

that κ
(1)
η < κ

(2)
η was imposed for the in-sample window 3. In the final specification,

coefficients are set to zero if they are insignificant at the 5% significance level and AIC

and SIC fall by doing so. We set marginally significant coefficients to zero if doing so

9It would be interesting to investigate more formally any relationship between indicators of company
profitability and the shape of periodicity.
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Figure 5: The empirical c.d.f. of non-zero ε̂t,τ against the theoretical c.d.f. of GB2(ν̂, ξ̂, ζ̂)

(left). The empirical c.d.f. of the PIT values of non-zero ε̂t,τ when F ∗(·; θ̂
∗
) is GB2(ν̂, ξ̂, ζ̂)

(right). For the in-sample window 1 (left), 2 (center), and 3 (right). The spline-DCS with
the dynamic spline.

Window 1 2 3

KS test (p-val.) 0.00 0.02 0.21

Table 6: The Kolmogorov-Smirnov test to assess the null that ε̂t,τ comes from

GB2(ν̂, ξ̂, ζ̂). The table reports the p-values of the statistics.

decreases AIC and SIC.10 Based on the empirical findings of Section 3, the generalized

beta distribution of the second kind (GB2) was chosen and tested as the error distribution,

F ∗. GB2 has the shape parameters θ∗ = (ν, ξ, ζ).

In the final specifications, we have κ̂
(2)
η > κ̂

(1)
η > κ̂µ > 0 so that η

(2)
t,τ is more sensitive

to changes in ut,τ−1 than η
(1)
t,τ , and that η

(1)
t,τ is more sensitive to ut,τ−1 than µt,τ . We also

have 0 < φ̂
(2)
1 < 1 so η

(2)
t,τ is stationary. For the in-sample window 1, the stationarity of η

(1)
t,τ

in the final model requires φ
(1)
1 + φ

(1)
2 < 1, −φ(1)

1 + φ
(1)
2 < 1, and φ

(1)
2 > −1. (See Harvey

(1993, p.19).) These conditions are satisfied by φ̂
(1)
1 and φ̂

(1)
2 so that η

(1)
t,τ is stationary.

For the in-sample windows 2 and 3, numerically inspecting the roots of the equation,

1− φ̂(1)
1 z− φ̂(1)

2 z2− φ̂(1)
3 z3 = 0, for some real or complex z gave the roots outside the unit

disk, suggesting that η
(1)
t,τ is stationary. The parameter values on the lagged coefficients

suggest that η̂
(1)
t,τ is more persistent than η̂

(2)
t,τ in all of the final specifications. AIC and

SIC decreased when we set β1,1 = 0 in all of the cases. For the in-sample windows 2

and 3, κ̂
(1)
a,η was insignificant, suggesting that the asymmetry effect is significant only for

the short-run stationary component η
(2)
t,τ . This is consistent with Engle and Lee (1999)

10We relied more on AIC and SIC than the t-statistics when selecting the model since we did not
formally check the asymptotic properties of the ML estimators in our version of the DCS model.
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Figure 6: The autocorrelation function of ε̂t,τ (left), and of ût,τ (right). For the in-sample
window 1 (left), 2 (center), and 3 (right). The spline-DCS with the dynamic spline.

and Harvey (2013), who find that the leverage effect in two-component return volatility

models is mainly restricted to the short-run volatility component. However, for the in-

sample window 1, κ
(1)
a,η was significant but not κ

(2)
a,η, which means that the asymmetry

effect is in the low-frequency stationary component, η
(1)
t,τ . In all of the final specifications,

the sign of the asymmetry effect is positive, which is consistent with the study of trade

volume of selected Exchange Traded Funds by Brownlees et al. (2011).

Figure 5 illustrates the quality of the fit of GB2. The empirical c.d.f. of non-zero ε̂t,τ

overlaps the c.d.f. of GB2(ν̂, ξ̂, ζ̂) so that these two lines are visually indistinguishable.

The closeness of the fit is also seen in the empirical c.d.f. of the probability integral

transform (PIT) of non-zero ε̂t,τ when F ∗(·; θ̂
∗
) is GB2(ν̂, ξ̂, ζ̂). It lies very close to the

diagonal, indicating that the PIT values are remarkably close to being standard uniformly

distributed (denoted by U [0, 1]). The Kolmogorov-Smirnov test rejects the null that ε̂t,τ

comes from GB(ν̂, ξ̂, ζ̂) at the 1% level for the in-sample window 1 and at the 5% level for

the in-sample window 2. (See Table 6.) We think that this is partly due to the relative

large sample size for these windows. The estimated GB2 parameters give 5 < ν̂ζ̂ < 6

so that the moments up to the fifth exist. Since ν̂ζ̂ is the upper tail-index of GB2, the

estimated GB2 is heavy-tailed.

Figure 6 shows that the dynamics of IBM10m are captured fairly well by the model

as the estimation residuals ε̂t,τ and the score ût,τ show little to no marked signs of serial

correlation, although there is a small degree of persistence in the first few lags of ε̂t,τ .

Outliers in ε̂t,τ usually weaken serial correlation, but the small persistence in ε̂t,τ (as

opposed to ût,τ ) could be due to a couple of successive large observations in ε̂t,τ . See

Harvey and Lange (2015).11 The model could not perfectly capture the daily periodic

11ût,τ is more robust to outliers than ε̂t,τ because the score weighs down the effects of large-sized
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ε̂t,τ ε̂2t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 0.148 0.003 420.807 628.262 0.000 0.000 0.231 -0.003 1033.660 1265.957 0.000 0.000
2 0.135 0.003 574.188 1231.820 0.000 0.000 0.039 0.000 47.542 182.244 0.000 0.000
3 0.100 0.000 390.045 547.160 0.000 0.000 0.041 -0.001 65.933 72.469 0.000 0.000

ût,τ û2t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 -0.010 0.015 1.873 237.396 0.171 0.000 0.036 0.016 24.535 135.275 0.000 0.000
2 -0.005 0.009 0.807 168.844 0.369 0.000 0.065 0.021 134.920 699.380 0.000 0.000
3 -0.007 0.009 1.799 265.434 0.180 0.000 0.027 0.020 28.141 271.608 0.000 0.000

Table 7: In-sample residual analysis for the spline-DCS with the dynamic cubic spline.
Ql is the Ljung-Box statistic to test the null of no autocorrelation up to the l-th lag.

(a) Out-of-sample window 1.
50 days ahead (top).
100 days ahead (bottom).
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(b) Out-of-sample window 2.
50 days ahead (top).
100 days ahead (bottom).
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(c) Out-of-sample window 3.
50 days ahead.
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Figure 7: The autocorrelation function of non-zero ε̃t,τ for the specified out-of-sample win-
dow. The spline-DCS with the dynamic spline. The parameter estimates were obtained
by fitting the model to the corresponding in-sample window.

patterns, as there are still peaks in the autocorrelation of ε̂t,τ and ût,τ at the multiples

of the 39th lag. But the model does a good job in capturing a substantial part of

the periodic patterns. The autocorrelation at these lags could be removed further by

including additional information (e.g. overnight price change) to improve how the model

captures the overnight effect. The features discussed here are also seen in the Ljung-Box

tests reported in Table 7. It is worthwhile noting that the large sample sizes make the

Ljung-Box test statistics sensitive to small departures from zero autocorrelation.

observations.
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ε̂t,τ ε̂2t,τ

Window ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day ρ̂1 ρ̂day Q1 Qday p-val. 1 p-val. day
1 0.050 0.010 9.686 81.429 0.002 0.000 0.043 0.012 7.030 88.390 0.008 0.000
2 0.076 0.014 21.768 66.052 0.000 0.000 0.031 -0.001 3.577 10.001 0.059 0.998
3 0.056 0.026 6.622 79.423 0.010 0.000 0.033 0.011 2.410 36.065 0.121 0.090

Table 8: Out-of-sample residual analysis of one-step ahead forecasts for the spline-DCS
with the dynamic cubic spline. Ql is the Ljung-Box statistic to test the null of no
autocorrelation up to the l-th lag. We test ε̃t,τ up to 100 out-of-sample days ahead

Window 1 2 3

KS test (p-val.) 0.09 0.36 0.00

Table 9: The Kolmogorov-Smirnov test to assess the null that ε̃t,τ comes from

GB2(ν̂, ξ̂, ζ̂). The table reports the p-values of the statistics. We test ε̃t,τ up to 100
out-of-sample days ahead.

5. Out-of-sample performance

5.1. One-step ahead forecasts

We use the predictive c.d.f. to assess the stability of the model and the performance of

its one-step ahead forecasts over a given out-of-sample period. The notations and the

methodology are the same as Ito (2016). We recall some of them here. We use the set

notation, Ψh = {(t, τ) ∈ {T + 1, . . . , T + h} × {1, . . . , I}}, where h ∈ N>0 is the number

of out-of-sample days.

The predictive c.d.f. is F ∗(ε̃t,τ ; θ̂
∗

), where ε̃t,τ = yt,τ/ exp(λ̃t,τ ) for all (t, τ) ∈ Ψh.

The one-step ahead forecasts, λ̃t,τ , is obtained by recursively updating λt,τ at each new

out-of-sample observation point yt,τ for (t, τ) ∈ Ψh without re-estimating the in-sample

parameter values. The parameter values used here are from the estimation results we

discussed in Section 4. The predictive c.d.f. gives the PIT values of forecast standardized

observations. We use the out-of-sample windows tabulated in Table 1.

Figure 7 shows the autocorrelation function of the forecast standardized observations,

ε̃t,τ , when the model is the final specification given in Table 4. They are roughly free of

autocorrelation for up to 50 or 100 days ahead. As we have 39 observations per day for

IBM10m, h = 100 corresponds to 3,900 steps ahead. However, the Ljung-Box statistics

detect statistically significant autocorrelation ε̂t,τ as reported in Table 8, when we test

ε̃t,τ up to 100 out-of-sample days ahead. As before, this is partly due to the large sample

size.

Figure 8 shows the empirical c.d.f. of the predictive c.d.f. of ε̃t,τ . It illustrates that the

PIT values are remarkably close to being U [0, 1] for an extended out-of-sample period,

especially for the out-of-sample windows 1 and 2. For these windoes, the Kolmogorov-

Smirnov tests cannot reject the null that the forecast residuals ε̃t,τ comes from GB2(ν̂, ξ̂, ζ̂)

at the 5% level, when we test ε̃t,τ up to 100 out-of-sample days ahead. For the out-of-
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(b) Out-of-sample window 2.
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Figure 8: The empirical c.d.f. of the PIT values (predictive c.d.f.) of non-zero ε̃t,τ for the
specified out-of-sample window. The spline-DCS with the dynamic spline.

sample windows 1 and 2, the Kolmogorov-Smirnov tests cannot reject the null that ε̃t,τ

comes from GB2(ν̂, ξ̂, ζ̂) when we test ε̃t,τ for up to 100 out-of-sample days of the respec-

tive windows. Thus, the estimated GB2 appears to capture the empirical distribution of

the out-of-sample data very well.

Figure 9 compares the QQ-plot of ε̃t,τ for when the spline is either dynamic or static.

The model used here is still the final specification given in Table 4, and the static spline

is obtained by setting κ∗ = 0. If the tail region of a given QQ-plot lies below the diagonal

line, it means that the estimated GB2 (i.e. GB2(ν̂, ξ̂, ζ̂)) understates the size of the tail

of the data. For the out-of-sample windows 1 and 3, it is interesting to observe that the

QQ-plot for the model with the dynamic spline appears to lie closer to the diagonal line

(especially in the tail region) than they do for the model with the static spline. We do

not observe any marked difference in the QQ-plot for the out-of-sample window 2. These

results suggest that the dynamic spline does either as well as, or better than, the static

spline in capturing the empirical distribution of the data.

5.2. Out-of-sample model comparison: static versus dynamic

spline

A quantity of great interest in high-frequency volume prediction is the proportion of daily

trade volume attributed to each intra-day bin. That is, wt,τ = yt,τ/
∑I

τ=1 yt,τ for each

(t, τ) ∈ Ψh. Accurate prediction of this quantity helps traders minimize the slippage of

each transaction, which is the difference between the expected price and the actual traded

price, and to achieve the execution price of transactions for the day to be near the daily
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(b) Out-of-sample window 2
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(c) Out-of-sample window 3

Quantile of (res
f
 > 0)

0 1 2 3 4 5

Q
ua

nt
ile

 o
f G

B
2

0

1

2

3

4

5
10 days ahead

Static Spline
Dynamic Spline
95-99.9% quant.

Quantile of (res
f
 > 0)

0 1 2 3 4 5

Q
ua

nt
ile

 o
f G

B
2

0

1

2

3

4

5
40 days ahead

Static Spline
Dynamic Spline
95-99.9% quant.

Quantile of (res
f
 > 0)

0 1 2 3 4 5

Q
ua

nt
ile

 o
f G

B
2

0

1

2

3

4

5
50 days ahead

Static Spline
Dynamic Spline
95-99.9% quant.

Figure 9: The QQ-plot of non-zero ε̃t,τ for the specified out-of-sample window. The
spline-DCS with the static spline (o, red) and the dynamic spline (x, blue). The off-

diagonal dashed lines are the 95% and 99.9% theoretical quantiles of GB2(ν̂, ξ̂, ζ̂), where
the distribution parameters are obtained from estimating the spline-DCS with the static
spline.

VWAP benchmark. The loss function we consider here is the daily slicing loss function

of Brownlees et al. (2011) given by:

Lslicing
(
(yT+h,τ , ỹT+h,τ )

I
τ=1

)
= −

I∑
τ=1

wT+h,τ log ŵT+h,τ .

This slicing loss is developed by Brownlees et al. (2011) to evaluate the performance

of trading strategies that aim to replicate the daily VWAP. The slicing loss is a com-

mon term determining the ranking of models by the negative multinomial log-likelihood

loss and the Kullback-Leibler loss. We compute the forecast slicing weights (or volume

proportions), ŵT+h,τ , under the dynamic VWAP replication strategy outlined by Brown-
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Window 1 2 3

Dynamic VWAP -21.56*** -17.86*** 20.22***

Table 10: Diebold-Mariano statistics to test the null of equal predictive ability against the
alternative of different predictive ability, which is a two-sided test with * 10% significance,
** 5% significance, and *** 1% significance. If the alternative is of a one-sided test, a
statistically significant negative (positive) value is in favor of the dynamic (static) spline.

lees et al. (2011).12 The dynamic VWAP updates static-VWAP throughout the day to

re-compute proportions forecast for the rest of the day using new intra-day data. The

static-VWAP replication strategy is volume proportions forecast for one complete day

ahead, but it is not updated during the day. See Brownlees et al. (2011) for the details.

The dynamic VWAP is a function of one-step and multi-step ahead point forecasts

of trade volume. With the spline-DCS, the formulae we use for one-step ahead point

forecast is:

ỹT+h,τ+1 ≡ E[yT+h,τ+1|FT+h,τ ] = exp(λ̃T+h,τ+1)

∫ ∞
0

xf(x; θ̂)dx. (3)

Since the error distribution is fully given by GB2, the integral can be computed analyti-

cally. The multi-step predictor of volume for a given day is ỹt,τ+i = E [exp(λt,τ+i)|Ft,τ ]
∫∞
0
xf(x; θ̂)dx

for i = 1, . . . , I − τ and (t, τ) ∈ ΨH . The conditional moment is evaluated using the mo-

ment generating function (m.g.f.) of the score variable, ut,τ+i, for i = 1, . . . , I− τ , as well

as λ̃t,τ computed above because we do not re-estimate constant parameters over a given

out-of-sample period. See Brownlees et al. (2011). The m.g.f. of ut,τ exists and can be

evaluated analytically in our case.

The Diebold-Mariano statistics reported in Table 10 are comfortably in favor of the

dynamic spline over the static one for the out-of-sample windows 1 and 2. In other

words, for these windows, the use of the dynamic spline leads to the dynamic VWAP

that substantially improves on the model with the static spline in minimizing the slicing

loss and achieving the VWAP target.

5.3. Discussions

In Section 5.1, we observed an improvement in the quality of the fit of the model to

the empirical distribution of the data, especially in the tail region. Moreover, in Section

5.2, a model that allows for changing periodic patterns can lead to improved volume

proportions forecasts, and outperform the model with the static spline in minimizing the

slicing loss function.

These results can be explained by the fact that the dynamic spline can reflect changes

in the pattern of morning and afternoon trading activity, and adjust how the model

standardizes relatively large-sized observations each day. As Figures 4 and 10 show, the

12We do not consider the VWAP-tracking MSE discussed in Bialkowski et al. (2008) as we did not
have the price data. Brownlees et al. (2011) prefer the slicing loss, which is less noisy.
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(b) Out-of-sample window 2
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(c) Out-of-sample window 3
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Figure 10: The min-max range of exp(s̃t,τ ) at each intra-day bin for the specified out-
of-sample windows. The spline-DCS with the dynamic spline. Intra-day hours between
9.30am and 4pm in the NY local time along the x-axis.

pattern of periodicity changes the most in the morning and in the afternoon. Among the

out-of-sample windows, the pattern of periodicity changes the most in the out-of-sample

windows 1 and 2. They are the windows in which the dynamic spline outperformed the

static one in capturing the tail of the data and minimizing the slicing loss.

6. Concluding remarks

This paper generalized the spline-DCS to capture dynamic diurnal patterns in high-

frequency financial data. We found statistical evidence for changing diurnal patterns in

our data, and that this generalization can improve the quality of the fit of the model to

the data, especially in the tail region. Moreover, it can lead to a significantly improved

performance in volume proprotions forecasts and minimizing the slicing loss function

for assessing the optimality of VWAP replication strategies. The out-of-sample forecast

results also show that the in-sample estimation results are stable, and that our model is

able to provide good one-step ahead forecasts.

It would be interesting to introduce a weekly spline by letting the periodicity to be

complete over one week instead of one day. Then we can allow for the shape of periodicity

to depend on the day of the week. This introduces a new way of capturing the day-of-

the-week effect in finance. In the literature, it is modelled using dummy variables, which

only allows for the level of the data to depend on the day of the week. We can also allow

for the weekly spline to evolve over time in the fashion we introduced in this paper.
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Appendix A: Selected balance-sheet statistics
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Figure 11: The annual revenue and net income (in $ billions, left), and the consolidated
gross profit margin (right) for IBM for the fiscal years ending December. (Note that
the left axis of the revenue line starts from $60 billion.) Source: IBM annual report
(www.ibm.com).
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